Enantiomeric phase separation in a lattice gas model: Guggenheim approximation
We consider a lattice gas in which the two enantiomeric forms of a tetrahedral molecule, consisting of a central carbon atom bonded to four different groups A, B, G, and H, are adsorbed onto a triangular lattice, such that the carbon atom is above a lattice site, the three bonds to A, B, and G point...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 1986-05, Vol.84 (9), p.5090-5094 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a lattice gas in which the two enantiomeric forms of a tetrahedral molecule, consisting of a central carbon atom bonded to four different groups A, B, G, and H, are adsorbed onto a triangular lattice, such that the carbon atom is above a lattice site, the three bonds to A, B, and G point toward neighboring lattice sites, and the bond to H points perpendicular to and away from the plane of the lattice. For a certain choice of intermolecular interactions, such as may exist between the zwitterion forms of an amino acid, the phase diagram was investigated using a Guggenheim approximation with two order parameters. Enantiomeric phase separation into two symmetric condensed phases occurs at low temperatures. These condensed phases become a single racemic condensed phase at a critical line, and they are in equilibrium with a racemic gas phase along a line of triple points. These two lines coincide at a critical endpoint. The racemic condensed and gas phases are in equilibrium along a two phase coexistence line which begins at the critical endpoint and ends at a critical point. No tricritical point was found in the model for the special choice of interactions studied. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.450661 |