An improved potential energy surface for F+H2→HF+H and H+H′F→HF+H

We present an improved analytic potential energy surface for the F+H2→FH+H and H+FH′→HF+H′ reactions. The final surface is obtained in two stages. First we create a surface, called No. 4, which is based in the F–H–H barrier region on a previous partly empirical and partly theoretical fit and is base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 1985-01, Vol.82 (1), p.188-201
Hauptverfasser: Brown, Franklin B., Steckler, Rozeanne, Schwenke, David W., Truhlar, Donald G., Garrett, Bruce C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an improved analytic potential energy surface for the F+H2→FH+H and H+FH′→HF+H′ reactions. The final surface is obtained in two stages. First we create a surface, called No. 4, which is based in the F–H–H barrier region on a previous partly empirical and partly theoretical fit and is based on the F–H⋅⋅⋅H exit channel and H–F–H barrier regions on new large-basis-set configuration interaction calculations. The final surface, called No. 5 incorporates more empirical information for collinear geometries in both the F–H–H and FH⋅⋅⋅H regions but remains a good representation of the ab initio calculations for bending potentials and in the strong-interaction regions. Variational-transition-state theory rate constants and WKB adiabatic barrier heights indicate that the final surface is more accurate than previous surfaces for thermal rate constants and overall reaction thresholds for F+H2→HF+H, F+D2→DF+D, and F+HD→HF+D and for product-state thresholds for HF (n′=3) and DF(n′=4), where n′ is the final vibrational quantum number.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.448781