Interference effects in rotational state distributions: Propensity and inverse propensity

Semiclassical scattering theory has been used to investigate interference effects in rotational state distributions for inelastic atom–diatom collisions. The Δj=even selection rule for homonuclear molecules is seen semiclassically to be an interference effect, and when this symmetry is weakly broken...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:J. Chem. Phys.; (United States) 1977-07, Vol.67 (2), p.463-468
Hauptverfasser: McCurdy, Clyde W., Miller, William H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiclassical scattering theory has been used to investigate interference effects in rotational state distributions for inelastic atom–diatom collisions. The Δj=even selection rule for homonuclear molecules is seen semiclassically to be an interference effect, and when this symmetry is weakly broken—i.e., an ’’almost homonuclear’’ molecule, one for which the odd anisotropy is much smaller than the even anisotropy—the interference persists in the form of a propensity rule, σ (odd Δj) ≪σ (even Δj). If the odd anisotropy is sufficiently large, however, one can see an inversion of the normal propensity, i.e., it can happen that σ (odd Δj) ≳σ (even Δj). It is suggested that rotationally state-selected experiments which resolve this interference structure would be an extremely sensitive measure of the anisotropy in the interaction potential.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.434890