Magnetic properties and microstructure of Mn–Al–C thin films
Mn x Al 100−x−y C y thin films with x=35–65 at. % and y=0–2.4 at. % were prepared by rf magnetron sputtering. Effects of the chemical composition and annealing temperature on the magnetic properties and microstructure of Mn–Al–C films were investigated. X-ray analysis shows that the as-deposited Mn–...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1999-04, Vol.85 (8), p.4892-4894 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mn x Al 100−x−y C y thin films with x=35–65 at. % and y=0–2.4 at. % were prepared by rf magnetron sputtering. Effects of the chemical composition and annealing temperature on the magnetic properties and microstructure of Mn–Al–C films were investigated. X-ray analysis shows that the as-deposited Mn–Al–C thin films are amorphous, and their saturation magnetization is very low. After annealing at temperatures between 400 and 550 °C in vacuum for 30 min, the magnetic phase with higher carbon concentration shows better thermal stability. The best annealing condition was found to be at 410 °C for 30 min. A ferromagnetic τ phase with a grain size of roughly 200–250 nm appeared at a composition range between 40 and 60 at. % Mn for MnxAl99−xC1 thin films; and the sample with Mn50Al49C1 has high coercivity and moderate saturation magnetization. The carbon addition can increase the thermal stability of the coercivity of the Mn–Al thin films. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.369133 |