Defects and interfaces in epitaxial ZnO/α-Al2O3 and AlN/ZnO/α-Al2O3 heterostructures
We have investigated the nature of epitaxy, defects (dislocations, stacking faults, and inversion domains), and heterointerfaces in zinc oxide films grown on (0001) sapphire and explored the possibility of using it as a buffer layer for growing group III nitrides. High quality epitaxial ZnO films we...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1998-09, Vol.84 (5), p.2597-2601 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the nature of epitaxy, defects (dislocations, stacking faults, and inversion domains), and heterointerfaces in zinc oxide films grown on (0001) sapphire and explored the possibility of using it as a buffer layer for growing group III nitrides. High quality epitaxial ZnO films were grown on sapphire using pulsed laser deposition in the temperature range 750–800 °C. The epitaxial relationship of the film with respect to (0001) sapphire was found to be (0001)ZnO∥(0001)sap, with in-plane orientation relationship of [011̄0]ZnO∥[1̄21̄0]sap. This in-plane orientation relationship corresponds to a 30° rotation of ZnO basal planes with respect to the sapphire substrate, which is similar to the epitaxial growth characteristics of AlN and GaN on sapphire. The threading dislocations in ZnO were found to have mostly 1/3〈112̄0〉 Burgers vectors. The planar defects (mostly I1 stacking faults) were found to lie in the basal plane with density of about 105 cm−1. We have grown epitaxial AlN films at temperatures around 770 °C using ZnO/sapphire heterostructure as a substrate and observed the formation of a thin reacted layer at the AlN/ZnO interface. The implications of low defect content in ZnO films compared to III–V nitrides and the role of ZnO films as a buffer layer for III–V nitrides are discussed. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.368440 |