Mach stem formation in explosion systems, which include high modulus elastic elements
Results of experimental and numerical research of the Mach stem formation in explosion systems, which include high modulus elastic elements, are presented. The experimental data are discussed, and the analysis using ANSYS AUTODYN 11.0 is provided. It is shown that the phenomenon is reproduced for va...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2011-12, Vol.110 (12), p.123516-123516-7 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Results of experimental and numerical research of the Mach stem formation in explosion systems, which include high modulus elastic elements, are presented. The experimental data are discussed, and the analysis using ANSYS AUTODYN 11.0 is provided. It is shown that the phenomenon is reproduced for various high explosives. The Mach stem formation is observed in the conditions close to critical conditions of detonation transfer from an active to a passive HE charge. The best conditions for the Mach stem formation have been observed for TG-40/60 (Russian analog of Composition B) with silicon carbide insert heights of 16.5 mm, 18 mm, and 19.5 mm. The physical reason of the phenomenon is the propagation of a convergent detonation wave into highly compressed HE. The phenomenon is reproduced in numerical simulation with ANSYS AUTODYN 11.0. Calculated maximum value of pressure on the symmetry axis of passive HE charge was up to 1.25 Mbar. Results of metallographic analysis of steel identification specimen on the rear end of the passive HE charge indirectly confirm very high local pressures and temperatures for this scheme of explosion loading. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3671063 |