Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2011-11, Vol.110 (10), p.104501-104501-9
1. Verfasser: Schiff, E. A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4 n 2 + n λ / h ( n - film refractive index, λ - optical wavelength, h - film thickness), which is an increase beyond the non-plasmonic "classical" enhancement 4 n 2 . Larger resonant enhancements occur for wavelengths near the surface plasmon frequency; these add up to 2 mA/cm 2 to the photocurrent of a solar cell based on a 500 nm film of crystalline silicon. We also calculated the effects of plasmon dissipation in the metal. Dissipation rates typical of silver reverse the resonant enhancement effect for silicon, but a non-resonant enhancement remains.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3658848