Morphology and microstructure of epitaxial Cu(001) films grown by primary ion deposition on Si and Ge substrates

A low-energy, high-brightness, broad beam Cu ion source is used to study the effects of self-ion energy Ei on the deposition of epitaxial Cu films in ultrahigh vacuum. Atomically flat Ge(001) and Si(001) substrates are verified by in situ scanning tunneling microscopy (STM) prior to deposition of 30...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Physics 1996-12, Vol.80 (12), p.6699-6705
Hauptverfasser: Karr, Brian W., Kim, Y. W., Petrov, I., Bergstrom, D. B., Cahill, David G., Greene, J. E., Madsen, L. D., Sundgren, J.-E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A low-energy, high-brightness, broad beam Cu ion source is used to study the effects of self-ion energy Ei on the deposition of epitaxial Cu films in ultrahigh vacuum. Atomically flat Ge(001) and Si(001) substrates are verified by in situ scanning tunneling microscopy (STM) prior to deposition of 300 nm Cu films with Ei ranging from 20 to 100 eV. Film microstructure, texture, and morphology are characterized using x-ray diffraction ω-rocking curves, pole figure analyses, and STM. Primary ion deposition produces significant improvements in both the surface morphology and mosaic spread of the films: At Ei>37 eV the surface roughness decreases by nearly a factor of 2 relative to evaporated Cu films, and at Ei≂35 eV the mosaic spread of Cu films grown on Si substrates is only ≂2°, nearly a factor of 2 smaller than that of evaporated Cu. During deposition with Ei≂25 eV on Ge substrates, the film coherently relaxes the 10% misfit strain by formation of a tilt boundary which is fourfold symmetric toward 〈111〉. The films have essentially bulk resistivity with ρ=1.9±0.1 μΩ cm at room temperature but the residual resistance at 10 K, ρ0, shows a broad maximum as a function of Ei, e.g., at Ei≂30 eV, ρ0=0.5 μΩ cm.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.363795