Ultra-wide bandwidth piezoelectric energy harvesting
Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a nonlinear stiffness, which provides a passive feedback and results in amplitude...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2011-08, Vol.99 (8), p.083105-083105-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a nonlinear stiffness, which provides a passive feedback and results in amplitude-stiffened Duffing mode resonance. This design has been fabricated into a compact MEMS device, which is about the size of a US quarter coin. Based on the open circuit voltage measurement, it is expected to have more than one order of magnitude improvement in both bandwidth (more than 20% of the peak frequency) and power density (up to 2 W/cm
3
) in comparison to the devices previously reported. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3629551 |