Ultra-wide bandwidth piezoelectric energy harvesting

Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a nonlinear stiffness, which provides a passive feedback and results in amplitude...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-08, Vol.99 (8), p.083105-083105-3
Hauptverfasser: Hajati, Arman, Kim, Sang-Gook
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we present an ultra wide-bandwidth energy harvester by exploiting the nonlinear stiffness of a doubly clamped microelectromechanical systems (MEMSs) resonator. The stretching strain in a doubly clamped beam shows a nonlinear stiffness, which provides a passive feedback and results in amplitude-stiffened Duffing mode resonance. This design has been fabricated into a compact MEMS device, which is about the size of a US quarter coin. Based on the open circuit voltage measurement, it is expected to have more than one order of magnitude improvement in both bandwidth (more than 20% of the peak frequency) and power density (up to 2 W/cm 3 ) in comparison to the devices previously reported.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.3629551