Growth of Er-doped silicon using metalorganics by plasma-enhanced chemical vapor deposition

Epitaxial growth of Er-doped silicon films has been performed by plasma-enhanced chemical vapor deposition at low temperature (430 °C) using an electron cyclotron resonance source. The goal was to incorporate an optically active center, erbium surrounded by nitrogen, through the use of the metalorga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1996-07, Vol.80 (1), p.551-558
Hauptverfasser: Andry, P. S., Varhue, W. J., Ladipo, F., Ahmed, K., Adams, E., Lavoie, M., Klein, P. B., Hengehold, R., Hunter, J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epitaxial growth of Er-doped silicon films has been performed by plasma-enhanced chemical vapor deposition at low temperature (430 °C) using an electron cyclotron resonance source. The goal was to incorporate an optically active center, erbium surrounded by nitrogen, through the use of the metalorganic compound tris (bis trimethyl silyl amido) erbium. Films were analyzed by Rutherford backscattering spectrometry, secondary ion mass spectroscopy, and high resolution x-ray diffraction. The characteristic 1.54 μm emission was observed by photoluminescence spectroscopy. Previous attempts to incorporate the complex (ErO6) using tris (2,2,6,6-tetramethyl- 3,5-heptanedionato) erbium (III) indicated that excessive carbon contamination lowered epitaxial quality and reduced photoluminescent intensity. In this study, chemical analysis of the films also revealed a large carbon concentration, however, the effect on epitaxial quality was much less destructive. A factorial design experiment was performed whose analysis identified the key processing parameters leading to high quality luminescent films. Hydrogen was found to be a major cause of crystal quality degradation in our metalorganic plasma-enhanced process.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.362759