Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model

The conduction mechanism of metal oxide resistive switching memory is debated in the literature. We measured the I-V characteristics below the switching voltages through TiN/HfOx/Pt memory stack and found the conduction cannot be described by the commonly used Poole-Frenkel model, because the fitted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2011-08, Vol.99 (6)
Hauptverfasser: Yu, Shimeng, Guan, Ximeng, Wong, H.-S. Philip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conduction mechanism of metal oxide resistive switching memory is debated in the literature. We measured the I-V characteristics below the switching voltages through TiN/HfOx/Pt memory stack and found the conduction cannot be described by the commonly used Poole-Frenkel model, because the fitted dielectric constant and the trap energy are unreasonable as compared to their known values. Therefore, we provide an alternate viewpoint based on a trap-assisted-tunneling model. Agreement of the bias polarity/temperature/resistance state-dependent conduction behavior was achieved between this model and experimental data. And insights for the multilevel capability due to the control of tunneling distance were obtained.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.3624472