Investigation of the stress-dependent magnetic easy axis in steel using magnetic Barkhausen noise
Angular-dependent magnetic Barkhausen noise (MBN) measurements were performed on a pipeline steel sample for various values of applied uniaxial stress at three angles with respect to the sample’s zero stress magnetic easy axis direction. It was observed that the response of the MBN signal to stress...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1996-04, Vol.79 (8), p.4242-4252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angular-dependent magnetic Barkhausen noise (MBN) measurements were performed on a pipeline steel sample for various values of applied uniaxial stress at three angles with respect to the sample’s zero stress magnetic easy axis direction. It was observed that the response of the MBN signal to stress was dependent upon the direction of the stress with respect to the zero stress easy axis. The stress response of the MBN signal was greatest for (i) tensile stresses oriented perpendicular to the zero stress easy axis direction and (ii) compressive stresses applied parallel to the easy axis direction. The modification of the MBN signal under an applied stress was attributed primarily to a change in the 180° domain wall population in the material investigated. Results were described by a model that considered regions of locally correlated domain behavior, termed ‘‘interaction regions,’’ that were typically the size of grains within the steel material. A basic result of the model was the stress required to modify the number of 180° domain walls within an interaction region. Theoretical calculations of these threshold stresses for a typical grain size were found to be in agreement with the range of applied stresses that was observed to modify the angular-dependent MBN signal obtained from the sample. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.361878 |