Empirical pseudopotential calculations of the band structure and ballistic conductance of strained [001], [110], and [111] silicon nanowires
The electronic band structure of hydrogen passivated, square cross-section, uniaxially strained [001], [110], and [111] silicon nanowires (Si NWs) has been calculated using nonlocal empirical pseudopotentials calibrated to yield the correct work function and benchmarked against first-principles calc...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2011-08, Vol.110 (3), p.033716-033716-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electronic band structure of hydrogen passivated, square cross-section, uniaxially strained [001], [110], and [111] silicon nanowires (Si NWs) has been calculated using nonlocal empirical pseudopotentials calibrated to yield the correct work function and benchmarked against first-principles calculations. We present results regarding the dependence and direct/indirect nature of the bandgap on wire diameter and uniaxial strain as well as the ballistic conductance and effective mass. As a result of practical interest, we have found that the largest ballistic electron conductance occurs for compressively strained large-diameter [001] wires while the smallest transport electron effective mass is found for larger-diameter [110] wires under tensile stress. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3615942 |