Particle accumulation on periodic orbits by repeated free surface collisions
The motion of small particles suspended in cylindrical thermocapillary liquid bridges is investigated numerically in order to explain the experimentally observed particle accumulation structures (PAS) in steady two- and time-dependent three-dimensional flows. Particles moving in this flow are modele...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2011-07, Vol.23 (7), p.072106-072106-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The motion of small particles suspended in cylindrical thermocapillary liquid bridges is investigated numerically in order to explain the experimentally observed particle accumulation structures (PAS) in steady two- and time-dependent three-dimensional flows. Particles moving in this flow are modeled as perfect tracers in the bulk, which can undergo collisions with the free surface. By way of free-surface collisions the particles are transferred among different streamlines which represents the particle trajectories in the bulk. The inter-streamline transfer-process near the free surface together with the passive transport through the bulk is used to construct an iterative map that can describe the accumulation process as an attraction to a stable fixed point which represents PAS. The flow topology of the underlying azimuthally traveling hydrothermal wave turns out to be of key importance for the existence of PAS. In a frame of reference exactly rotating with the hydrothermal wave the three-dimensional flow is steady and exhibits co-existing regular and chaotic streamlines. We find that particles are attracted to accumulation structures if a closed regular streamline exists in the rotating frame of reference which closely approaches the free surface locally. Depending on the closed streamline and the particle radius PAS can arise as a specific trajectory which winds about the closed regular streamline or as the surface of a particular stream tube containing the closed streamline. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.3614552 |