Experimental study of graphitic nanoribbon films for ammonia sensing

We fabricate and study the ammonia sensing properties of graphitic nanoribbon films consisting of multi-layer graphene nanoribbons. These films show very good sensitivity to parts-per-million (ppm) level concentrations of ammonia, which is further enhanced by platinum functionalization, resulting in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2011-06, Vol.109 (12), p.124301-124301-7
Hauptverfasser: Johnson, Jason L., Behnam, Ashkan, An, Yanbin, Pearton, S. J., Ural, Ant
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We fabricate and study the ammonia sensing properties of graphitic nanoribbon films consisting of multi-layer graphene nanoribbons. These films show very good sensitivity to parts-per-million (ppm) level concentrations of ammonia, which is further enhanced by platinum functionalization, resulting in a relative resistance response of ∼70% when exposed to 50 ppm ammonia. In addition, the sensing response exhibits excellent repeatability and full recovery in air. We also study in detail the dependence of the sensing response on ammonia concentration and temperature. We find that the relative resistance response of the graphitic nanoribbon films shows a power-law dependence on the ammonia concentration, which can be explained based on the Freundlich isotherm. The activation energy obtained from an Arrhenius plot of the temperature-dependent measurements is ∼50 meV, which is consistent with the theoretical calculations of the adsorption energies of ammonia on large graphene sheets and nanoribbons. Their simple and low-cost fabrication process and good sensing response open up the possibility of using graphitic nanoribbon films for large-scale sensing applications.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3597635