Breakdown of the pseudopotential approximation for magnetizabilities and electric multipole moments: Test calculations for Au, AuF, and Sn n cluster ( n ⩽ 20)

The response of the electronic wavefunction to an external electric or magnetic field is widely considered to be a typical valence property and should, therefore, be adequately described by accurately adjusted pseudopotentials, especially if a small-core definition is used within this approximation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-05, Vol.134 (20), p.204102-204102-11
Hauptverfasser: Schwerdtfeger, Peter, Assadollahzadeh, Behnam, Rohrmann, Urban, Schäfer, Rolf, Cheeseman, James R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The response of the electronic wavefunction to an external electric or magnetic field is widely considered to be a typical valence property and should, therefore, be adequately described by accurately adjusted pseudopotentials, especially if a small-core definition is used within this approximation. In this paper we show for atomic Au and Au + , as well as for the molecule AuF and tin clusters, that in contrast to the case of the static electric dipole polarizability or the electric dipole moment, core contributions to the static magnetizability are non-negligible, and can therefore lead to erroneous results within the pseudopotential approximation. This error increases with increasing size of the core chosen. For tin clusters, which are of interest in ongoing molecular beam experiments currently carried out by the Darmstadt group, the diamagnetic and paramagnetic isotropic components of the magnetizability tensor almost cancel out and large-core pseudopotentials do not even predict the correct sign for this property due to erroneous results in both the diamagnetic and (more importantly) the paramagnetic terms. Hence, all-electron calculations or pseudopotentials with very small cores are required to adequately predict magnetizabilities for atoms, molecules and the solid state, making it computationally more difficult to obtain this quantity for future investigations in heavy atom containing molecules or clusters. We also demonstrate for this property that all-electron density functional calculations are quite robust and give results close to wavefunction based methods for the atoms and molecules studied here.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3591338