Electronic and chemical properties of the c-Si/Al2O3 interface

Using aluminum oxide (Al2O3) films deposited by atomic layer deposition (ALD), the dominant passivation mechanisms at the c-Si/Al2O3 interface, as well as the chemical composition of the interface region, are investigated. The excellent surface passivation quality of thin Al2O3 films is predominantl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2011-06, Vol.109 (11)
Hauptverfasser: Werner, Florian, Veith, Boris, Zielke, Dimitri, Kühnemund, Lisa, Tegenkamp, Christoph, Seibt, Michael, Brendel, Rolf, Schmidt, Jan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using aluminum oxide (Al2O3) films deposited by atomic layer deposition (ALD), the dominant passivation mechanisms at the c-Si/Al2O3 interface, as well as the chemical composition of the interface region, are investigated. The excellent surface passivation quality of thin Al2O3 films is predominantly assigned to a high negative fixed charge density of Qf = − (4 ± 1) × 1012 cm−2, which is located within 1nm of the Si/Al2O3 interface and is independent of the layer thickness. A deterioration of the passivation quality for ultrathin Al2O3 layers is explained by a strong increase in the interface state density, presumably due to an incomplete reaction of the trimethyl-aluminum (TMA) molecules during the first ALD cycles. A high oxygen-to-aluminum atomic ratio resulting from the incomplete adsorption of the TMA molecules is suggested as a possible source of the high negative charge density Qf at the Si/Al2O3 interface.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3587227