Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers
In conventional implementations, resonant chemical and biological sensors exploit chemomechanically-induced frequency shifts, which occur in linear systems, for analyte detection. In this letter, an alternative sensing approach, based upon dynamic transitions across saddle-node bifurcations is inves...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2011-04, Vol.98 (15), p.153510-153510-3 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In conventional implementations, resonant chemical and biological sensors exploit chemomechanically-induced frequency shifts, which occur in linear systems, for analyte detection. In this letter, an alternative sensing approach, based upon dynamic transitions across saddle-node bifurcations is investigated. This technique not only has the potential to render improved sensor metrics but also to eliminate frequency tracking components from final device implementations. The present work details proof-of-concept experiments on bifurcation-based sensing, which were conducted using selectively functionalized, piezoelectrically-actuated microcantilevers. Preliminary results reveal the proposed sensing technique to be a viable alternative to existing resonant sensing methods. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3574920 |