Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy
Degradation of top electrodes is one of the most important factors to determine the lifetimes of organic electroluminescence (EL) devices. An organic EL device [indium thin oxide (ITO)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4, 4′-diamine (TPD)/tris(8-hydroxy- quinoline)aluminum (Alq3...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1994-11, Vol.76 (9), p.5118-5121 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Degradation of top electrodes is one of the most important factors to determine the lifetimes of organic electroluminescence (EL) devices. An organic EL device [indium thin oxide (ITO)/N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4, 4′-diamine (TPD)/tris(8-hydroxy- quinoline)aluminum (Alq3)/Al] was prepared and a morphological change of the Al top electrode was observed during and/or after applying voltage by atomic force microscopy and scanning electron microscopy (SEM). The change in the electrode surface, i.e., the increase in surface roughness was observed during the current flow. The degradation process started from faint dark core parts and propagated into disks with different rates depending on the magnitude of applied voltage. Degraded sites of the Al electrode, which were analyzed as aluminum oxide by Auger electron spectroscopy, protruded into the air on the organic layers. In SEM images of a life-end electrode, discontinuities due to crevasse formation in the organic layers sandwiched by the ITO base and the metal top electrodes were observed in many places. These results confirm that one of the most crucial factors of the degradation process was deformation of metal and organic layers due to heat, gas evolution, and oxidation caused by applied voltage. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.357224 |