Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistors on silicon with SiN/Al2O3 passivation
The surface leakage currents and the surface trapping effects of the AlGaN/GaN high electron mobility transistors (HEMTs) on silicon with different passivation schemes, namely, a 120 nm plasma enhanced chemical vapor deposited SiN, a 10 nm atomic layer deposited (ALD) Al2O3 and a bilayer of SiN/Al2O...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2011-03, Vol.98 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The surface leakage currents and the surface trapping effects of the AlGaN/GaN high electron mobility transistors (HEMTs) on silicon with different passivation schemes, namely, a 120 nm plasma enhanced chemical vapor deposited SiN, a 10 nm atomic layer deposited (ALD) Al2O3 and a bilayer of SiN/Al2O3 (120/10 nm) have been investigated. After SiN passivation, the surface leakage current of the GaN HEMT was found to increase by about six orders; while it only increased by three orders after the insertion of Al2O3 between SiN and AlGaN/GaN. The surface conduction mechanism is believed to be the two-dimensional variable range hopping for all the samples. The leakage current in the etched GaN buffer layer with SiN/Al2O3 bilayer passivation was also much smaller than that with only SiN passivation. The pulse measurement shows that the bilayer of SiN/Al2O3 passivation scheme can effectively reduce the surface states and suppress the trapping effects. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3567927 |