Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications
We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous average visible transmission of >65%. Subsequent incorporation of near-infrare...
Gespeichert in:
Veröffentlicht in: | Appl. Phys. Lett 2011-03, Vol.98 (11) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous average visible transmission of >65%. Subsequent incorporation of near-infrared distributed-Bragg-reflector mirrors leads to an increase in the efficiency to 1.7±0.1%, approaching the 2.4±0.2% efficiency of the opaque cell, while maintaining high visible-transparency of >55%. Finally, we demonstrate that a series-integrated array of these transparent cells is capable of powering electronic devices under near-ambient lighting. This architecture suggests strategies for high-efficiency power-generating windows and highlights an application uniquely benefiting from excitonic electronics. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3567516 |