Formation of plasma working fluids for compression by liner implosions

Research on the formation of a hot hydrogen working fluid, which may be used in multiple concentric solid-density liner implosions, is reported. In such implosions, an axisymmetric outer liner is driven by a multi-megamp axial discharge, and a coaxial inner liner is driven by a working fluid contain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1994-04, Vol.75 (8), p.3769-3776
Hauptverfasser: Lehr, F. M., Alaniz, A., Beason, J. D., Carswell, L. C., Degnan, J. H., Crawford, J. F., Englert, S. E., Englert, T. J., Gahl, J. M., Holmes, J. H., Hussey, T. W., Kiuttu, G. F., Mullins, B. W., Peterkin, R. E., Roderick, N. F., Turchi, P. J., Graham, J. D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Research on the formation of a hot hydrogen working fluid, which may be used in multiple concentric solid-density liner implosions, is reported. In such implosions, an axisymmetric outer liner is driven by a multi-megamp axial discharge, and a coaxial inner liner is driven by a working fluid contained between the liners. The fluid is shocklessly compressed to high pressure as the outer liner implodes around it. In the work reported here a 10 to 100 Torr pressure, hydrogen filled coaxial gun discharge was used to inject plasma into a diagnostic chamber simulating an interliner volume. Spectroscopically determined electron densities of between 1017 and 1018 cm−3 and electron temperatures in the 0.5–2.0 eV range were obtained with a fair degree of reproducibility and symmetry. Two-dimensional, time-dependent magnetohydrodyna- mic computer simulations of the working fluid formation experiment have been performed, and the computations suggest that the present experiment achieves electron number densities and temperatures at the lower extreme of these limits, and neutral densities ∼ 0.3–1.0 ×1019 cm−3. The simulations further suggest that the upper range, and beyond, can be achieved in a more energetic version of the present experiment.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.356051