Universality of non-Ohmic shunt leakage in thin-film solar cells

We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu ( In , Ga ) Se 2 (CIGS) cells. All three device types exhibit a significant shunt leakage curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Physics 2010-12, Vol.108 (12), p.124509-124509-10
Hauptverfasser: Dongaonkar, S., Servaites, J. D., Ford, G. M., Loser, S., Moore, J., Gelfand, R. M., Mohseni, H., Hillhouse, H. W., Agrawal, R., Ratner, M. A., Marks, T. J., Lundstrom, M. S., Alam, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu ( In , Ga ) Se 2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias ( V < ∼ 0.4 ) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage ( I s h ) , across all three solar cell types considered, is characterized by the following common phenomenological features: (a) voltage symmetry about V = 0 , (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3518509