Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides
We present three-dimensional numerical modeling of an active electronically controlled switching element for fully-functional plasmonic circuits based on dielectric-loaded surface plasmon polariton waveguides. It has been demonstrated that the transmission of the guided mode through a highly wavelen...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2010-07, Vol.97 (4), p.041107-041107-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present three-dimensional numerical modeling of an active electronically controlled switching element for fully-functional plasmonic circuits based on dielectric-loaded surface plasmon polariton waveguides. It has been demonstrated that the transmission of the guided mode through a highly wavelength-selective waveguide ring resonator (WRR) can be efficiently controlled with very small refractive index changes of the order of
10
−
3
, achievable through the electro-optic effect in nonlinear materials. Furthermore, we have introduced a figure of merit for such active plasmonic elements and optimized the active WRR performance in terms of its sensitivity and size. These results shows the potential to create high performance 600 nm radius plasmonic WRR switches. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3464552 |