A computational study of x-ray emission from laser-irradiated Ge-doped foams

New advances in fabrication of low-density high- Z -doped foams have opened new windows on understanding how materials that are not in local thermodynamic equilibrium (LTE) are heated and radiate. Simulations are discussed in this paper of the x-ray spectral emissions from laser-irradiated very low-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2010-07, Vol.17 (7), p.73111
Hauptverfasser: Colvin, Jeffrey D., Fournier, Kevin B., May, Mark J., Scott, Howard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New advances in fabrication of low-density high- Z -doped foams have opened new windows on understanding how materials that are not in local thermodynamic equilibrium (LTE) are heated and radiate. Simulations are discussed in this paper of the x-ray spectral emissions from laser-irradiated very low-density Ge-doped silica aerogel targets using a two-dimensional radiation-hydrodynamics code incorporating a modern non-LTE superconfiguration atomic model. Details of the computational model are presented, and it is shown that, for the long-scale-length, subcritical-density, ∼ 2 – 3   keV electron temperature plasmas created in experiments at the Omega laser facility [T. R. Boehly et al. , Opt. Commun. 133, 495 (1997)], the simulations provide a close match to both the measured Ge L -shell emission ( ∼ 1 – 1.5   keV ) and the measured Ge K -shell emission ( ∼ 10 – 11   keV ) , but only by accounting properly for nonlocal thermal conduction. The older average-atom atomic model is shown to be inadequate for these non-LTE plasmas.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.3460817