High efficiency mesoporous titanium oxide PbS quantum dot solar cells at low temperature
Efficient charge transport is demonstrated in TiO2/PbS quantum dot solar cells where the PbS absorber (∼1.1 eV band gap) is deposited by dip coating and ethanedithiol ligand exchange, with power efficiencies above 3% at AM1.5. An increase in power efficiency occurs as the device temperature is lower...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2010-07, Vol.97 (4) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient charge transport is demonstrated in TiO2/PbS quantum dot solar cells where the PbS absorber (∼1.1 eV band gap) is deposited by dip coating and ethanedithiol ligand exchange, with power efficiencies above 3% at AM1.5. An increase in power efficiency occurs as the device temperature is lowered to 170 K, with a open-circuit voltage of 0.66 V, short-circuit current density of 28.6 mA/cm2 and fill factor of 42.4%. This remarkable temperature dependence is due to a large increase in charge transport between the PbS quantum dots with decreasing temperature. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3459146 |