Performance of Z-type hexagonal ferrite core under demagnetizing and external static fields

The effects of a demagnetizing field and an external static magnetic field on the effective Snoek's product of textured Z-type hexagonal ferrite, which is the product of effective susceptibility and resonance frequency, were examined in order to apply the Z-type hexagonal ferrite to high-freque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-08, Vol.108 (3), p.033903-033903-5
Hauptverfasser: Kato, Tomotsugu, Mikami, Hideto, Noguchi, Shin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effects of a demagnetizing field and an external static magnetic field on the effective Snoek's product of textured Z-type hexagonal ferrite, which is the product of effective susceptibility and resonance frequency, were examined in order to apply the Z-type hexagonal ferrite to high-frequency devices. As a result, the demagnetizing field due to the thin plate geometry increased the resonance frequency and the effective Snoek's product when a high-frequency magnetic field was applied parallel to the c-plane of the Z-type hexagonal ferrite. Moreover, the resonance frequency, effective susceptibility, and effective Snoek's product of 7.7 GHz, 10.7, and 82.2 GHz, respectively, were obtained when an external magnetic field that was sufficient to saturate the Z-type hexagonal ferrite slab was applied parallel to the c-plane and perpendicular to the high-frequency magnetic field. Furthermore, the Landau-Lifshitz equation suggested that a large Snoek's product of over 50 GHz could be obtained with an external static field as small as 31 kA/m, which is enough to saturate the Z-type hexagonal ferrite.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3457224