Particulate generation in silane/ammonia rf discharges

The rate of particle generation in a SiH4/NH3 rf discharge has been studied as a function of the discharge operating parameter space, electrode geometry, and power supply coupling mode. Measurements of the bulk quantity of particles produced in the discharge reveal that the mode of coupling (capacit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 1990-05, Vol.67 (9), p.3999-4011
Hauptverfasser: ANDERSON, H. M, RAHUL JAIRATH, MOCK, J. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rate of particle generation in a SiH4/NH3 rf discharge has been studied as a function of the discharge operating parameter space, electrode geometry, and power supply coupling mode. Measurements of the bulk quantity of particles produced in the discharge reveal that the mode of coupling (capacitive or dc) as well as the electrode temperature significantly affects particle generation rates. Laser light scattering measurements made as a function of the plasma power density indicate that particle generation abruptly ceases at a threshold value sufficient to induce spark breakdown at the cathode. Based on these observations, it is shown that particle growth in plasmas can be modeled entirely as a heterogeneous process. The initiation of particle growth is shown to be consistent with an electron surface desorption model involving vibrational excitation of surface clusters. Propagation of growth in the gas phase is shown to be consistent with an eliminative ion-molecular condensation reaction, and the pressure dependence of this mechanism is exploited to estimate a value for the rate constants for SiH4 and NH3 condensation in SiN:H particle growth.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.344983