Theory of the velocity-field relation in AlGaAs
We present ensemble Monte Carlo calculations of the steady-state electron drift velocity as a function of applied electric field in Al0.32 Ga0.68 As. The effect of various material parameters on the calculated velocity is assessed by varying each parameter independently by ±20%. It is found that bot...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 1988-05, Vol.63 (10), p.5004-5008 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present ensemble Monte Carlo calculations of the steady-state electron drift velocity as a function of applied electric field in Al0.32 Ga0.68 As. The effect of various material parameters on the calculated velocity is assessed by varying each parameter independently by ±20%. It is found that both the optical phonon energy and intervalley separation energy alter the peak electron velocity greatly. Variations in the dielectric constants and central valley effective mass have little effect upon the peak drift velocity, but act to alter the threshold electric field. It is further found that the threshold electric field is greater in Al0.32Ga0.68As than in GaAs even though the central-to-satellite valley separation energy is less in AlGaAs. The combined effects of a greater central valley effective mass and a larger phonon energy in AlGaAs result in a greater threshold field. Finally, we present sets of material parameters useful in Monte Carlo models for both GaAs and AlGaAs. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.340446 |