Super central configurations of the n -body problem

In this paper, we consider the inverse problem of central configurations of the n -body problem. For a given q = ( q 1 , q 2 , … , q n ) ∊ ( R d ) n , let S ( q ) be the admissible set of masses by S ( q ) = { m = ( m 1 , … , m n ) ∣ m i ∊ R + ,   q   is   a   central   configuration for   m } . For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2010-04, Vol.51 (4), p.042902-042902-7
1. Verfasser: Xie, Zhifu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the inverse problem of central configurations of the n -body problem. For a given q = ( q 1 , q 2 , … , q n ) ∊ ( R d ) n , let S ( q ) be the admissible set of masses by S ( q ) = { m = ( m 1 , … , m n ) ∣ m i ∊ R + ,   q   is   a   central   configuration for   m } . For a given m ∊ S ( q ) , let S m ( q ) be the permutational admissible set about m = ( m 1 , m 2 , … , m n ) by S m ( q ) = { m ′ ∣ m ′ ∊ S ( q ) ,   m ′ ≠ m   and   m ′   is   a permutation   of   m } . Here, q is called a super central configuration if there exists m such that S m ( q ) is nonempty. For any q in the planar four-body problem, q is not a super central configuration as an immediate consequence of a theorem proved by MacMillan and Bartky [“Permanent configurations in the problem of four bodies,” Trans. Am. Math. Soc. 34, 838 (1932)]. The main discovery in this paper is the existence of super central configurations in the collinear three-body problem. We proved that for any q in the collinear three-body problem and any m ∊ S ( q ) , S m ( q ) has at most one element and the detailed classification of S m ( q ) is provided.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3345125