A molecular dynamics study of the role of pressure on the response of reactive materials to thermal initiation

To elucidate the mechanisms of energy release in a reacting nickel/aluminum bilayer, we simulate the exothermic alloying reactions using both microcanonical and isoenthalpic-isobaric molecular dynamics simulations and an embedded-atom method type potential. The mechanism of the mixing consists of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-05, Vol.107 (9)
Hauptverfasser: Weingarten, N. Scott, Mattson, William D., Yau, Anthony D., Weihs, Timothy P., Rice, Betsy M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To elucidate the mechanisms of energy release in a reacting nickel/aluminum bilayer, we simulate the exothermic alloying reactions using both microcanonical and isoenthalpic-isobaric molecular dynamics simulations and an embedded-atom method type potential. The mechanism of the mixing consists of a sequence of steps in which mixing and reaction first occurs at the interface; the resulting heat generated from the mixing then melts the Al layer; subsequent mixing leads to further heat generation after which the Ni layer melts. The mixing continues until the alloying reactions are completed. The results indicate that pressure has a significant influence on the rates of atomic mixing and alloying reactions. Local pressures and temperatures within the individual layers at the time of melting are calculated, and these results are compared with the pressure-dependent melting curves determined for pure Al and pure Ni using this interaction potential.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3340965