Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories

Resistive-switching memory (RRAM) is attracting a considerable interest for the development of high-density nonvolatile memories. However, several scaling and reliability issues still affect the development path of RRAM. This work addresses random telegraph-signal noise (RTN) of the RRAM current, po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2010-02, Vol.96 (5)
Hauptverfasser: Ielmini, Daniele, Nardi, Federico, Cagli, Carlo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistive-switching memory (RRAM) is attracting a considerable interest for the development of high-density nonvolatile memories. However, several scaling and reliability issues still affect the development path of RRAM. This work addresses random telegraph-signal noise (RTN) of the RRAM current, potentially affecting the memory stability. We show a clear resistance dependence of the RTN amplitude, and we propose a physical model describing the interaction of the localized current with a fluctuating defect. By estimating the diameter of the conductive filament, the model quantitatively accounts for the observed RTN amplitude, thus allowing for an analytical prediction of state stability in RRAMs.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.3304167