Plasmonic absorption enhancement in organic solar cells with thin active layers

The influence of silver nanoparticles on light absorption in organic solar cells based on poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester is studied by means of finite element method simulations. The metallic nanoparticles are embedded directly inside the active layer. We investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-10, Vol.106 (7), p.073109-073109-5
Hauptverfasser: Shen, Honghui, Bienstman, Peter, Maes, Bjorn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of silver nanoparticles on light absorption in organic solar cells based on poly(3-exylthiophene):(6,6)-phenyl-C61-butyric-acid-methyl ester is studied by means of finite element method simulations. The metallic nanoparticles are embedded directly inside the active layer. We investigate the enhancement mechanism and the influence of factors such as the spacing between neighboring nanoparticles, the particle diameter, and the coating thickness. The plasmonic resonance of the particles has a wideband influence on the absorption, and we observe a rich interaction between plasmonic enhancement and the absorption characteristics of the active layer material. An enhancement with a factor of around 1.56 is observed for nanoparticles with a diameter of 24 nm and a spacing of 40 nm, bringing the structure to the absorption level of much thicker active layers without nanoparticles. In addition, a significant effect of the particle coating thickness is observed.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3243163