On uniformization of Burnside’s curve y2=x5−x

The main objects of uniformization of the curve y2=x5−x are studied: its Burnside’s parametrization, corresponding Schwarz’s equation, and accessory parameters. As a result we obtain the first examples of solvable Fuchsian equations on torus and exhibit number-theoretic integer q-series for uniformi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2009-10, Vol.50 (10)
1. Verfasser: Brezhnev, Yu. V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main objects of uniformization of the curve y2=x5−x are studied: its Burnside’s parametrization, corresponding Schwarz’s equation, and accessory parameters. As a result we obtain the first examples of solvable Fuchsian equations on torus and exhibit number-theoretic integer q-series for uniformizing functions, relevant modular forms, and analytic series for holomorphic Abelian integrals. A conjecture of Whittaker for hyperelliptic curves and its hypergeometric reducibility are discussed. We also consider the conversion between Burnside’s and Whittaker’s uniformizations.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.3215981