On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f actinide species

In a previous paper [Fromager et al., J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the μ parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2009-08, Vol.131 (5)
Hauptverfasser: Fromager, Emmanuel, Réal, Florent, Wåhlin, Pernilla, Wahlgren, Ulf, Jensen, Hans Jørgen Aa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous paper [Fromager et al., J. Chem. Phys. 126, 074111 (2007)], some of the authors proposed a recipe for choosing the optimal value of the μ parameter that controls the long-range/short-range separation of the two-electron interaction in hybrid multiconfigurational self-consistent field short-range density-functional theory (MC-srDFT) methods. For general modeling with MC-srDFT methods, it is clearly desirable that the same universal value of μ can be used for any molecule. Their calculations on neutral light element compounds all yielded μopt=0.4 a.u. In this work the authors investigate the universality of this value by considering “extreme” study cases, namely, neutral and charged isoelectronic f0 actinide compounds (ThO2, PaO2+, UO22+, UN2, CUO, and NpO23+). We find for these compounds that μopt=0.3 a.u. but show that 0.4 a.u. is still acceptable. This is a promising result in the investigation of a universal range separation. The accuracy of the currently best MC-srDFT (μ=0.3 a.u.) approach has also been tested for equilibrium geometries. Though it performs as well as wave function theory and DFT for static-correlation-free systems, it fails in describing the neptunyl (VII) ion NpO23+ where static correlation is significant; bending is preferred at the MC-srDFT (μ=0.3 a.u.) level, whereas the molecule is known to be linear. This clearly shows the need for better short-range functionals, especially for the description of the short-range exchange. It also suggests that the bending tendencies observed in DFT for NpO23+ cannot be fully explained by the bad description of static correlation effects by standard functionals. A better description of the exchange seems to be essential too.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3187032