Stability study of a gyrotron-traveling-wave amplifier based on a lossy dielectric-loaded mode-selective circuit

The millimeter microwave source of gyrotron-traveling-wave amplifier (gyro-TWT) is capable of generating high power coherent radiation in a broad bandwidth, while its performance is severely deteriorated by the stability problems. This paper focuses on modeling and the stability analysis of the Nava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2009-07, Vol.16 (7)
Hauptverfasser: Du, Chao-Hai, Liu, Pu-Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The millimeter microwave source of gyrotron-traveling-wave amplifier (gyro-TWT) is capable of generating high power coherent radiation in a broad bandwidth, while its performance is severely deteriorated by the stability problems. This paper focuses on modeling and the stability analysis of the Naval Research Laboratory (NRL) K a -band TE 01 mode gyro-TWT based on an interaction circuit alternately loaded with lossy ceramic shells and metal rings. The propagation characteristics of the interaction circuit is analyzed first, based on which the boundary impedance method is employed to build an equivalent uniform lossy circuit. Then the stability of the interaction system is studied using linear and nonlinear theories. The analysis reveals that, due to the special waveguide structure and the dielectric loss, the propagation characteristics of the complex waveguide are similar to that of a uniform lossy circuit. The analysis of the absolute instabilities characterizes the roles the forward-backward-wave components played. The study indicates that the lowest threshold current of the absolute instabilities is higher than the operating current, which brings the system high stability. The reliability of the analysis is proved by the consistency between the analysis and the NRL experimental results.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.3166602