Engineering of tunnel junctions for prospective spin injection in germanium
Even though the strong Fermi-level pinning at the metal/germanium (Ge) interface can be alleviated by inserting a thin layer of tunneling oxide, the still sizeable Schottky barriers and the wide depletion regions of the Fe/oxide/n-Ge contacts make the junction resistances strongly dependent of tempe...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2009-06, Vol.94 (24) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Even though the strong Fermi-level pinning at the metal/germanium (Ge) interface can be alleviated by inserting a thin layer of tunneling oxide, the still sizeable Schottky barriers and the wide depletion regions of the Fe/oxide/n-Ge contacts make the junction resistances strongly dependent of temperature. The resistance-area (RA) products of these junctions are too high for spin injection and cannot be tuned by simply varying oxide thickness or using ferromagnetic metal (FM) with a lower work function. In this work, low energy ion implantation and rapid thermal annealing were utilized to degenerately dope the Ge surface layer to facilitate single-step tunneling transport. The RA products of the junctions with surface doping are significantly reduced and weakly dependent of temperature. This method gives a prospect for spin injection to Ge from FM. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3157128 |