Direct observation of localized conduction pathways in photocross-linkable polymer memory

Resistive switching in photocross-linkable polymer memory devices was found to occur in localized areas of the device. In order to elucidate the reason behind the switching, we used focused ion-beam to prepare a cross-section of the device. It was found that after the device was switched to the high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-06, Vol.105 (12), p.124516-124516-5
Hauptverfasser: Kwan, Wei Lek, Lei, Bao, Shao, Yue, Prikhodko, Sergey V., Bodzin, Noah, Yang, Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Resistive switching in photocross-linkable polymer memory devices was found to occur in localized areas of the device. In order to elucidate the reason behind the switching, we used focused ion-beam to prepare a cross-section of the device. It was found that after the device was switched to the high conductive state, in certain parts of the device, the electrodes were only about 5 nm apart. This was probably caused by a combination of high electric field and metal injection into the polymer film. Gold injection into the polymer film by locally enhanced electric field was confirmed by transmission electron microscope-energy dispersive x-ray analysis. This model was in agreement with both the temperature dependent and transient behavior of our device. We conclude that the non-uniformities at the nanoscale interface of the electrode dominated the device characteristics while the polymer played only a secondary role.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3153980