Pulse-induced low-power resistive switching in HfO2 metal-insulator-metal diodes for nonvolatile memory applications

The conduction process as well as the unipolar resistive switching behavior of Au∕HfO2∕TiN metal-insulator-metal structures were investigated for future nonvolatile memory applications. With current-voltage measurements performed at different temperatures (200–400K), the Poole–Frenkel effect as cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-06, Vol.105 (11)
Hauptverfasser: Walczyk, Ch, Wenger, Ch, Sohal, R., Lukosius, M., Fox, A., Dąbrowski, J., Wolansky, D., Tillack, B., Müssig, H.-J., Schroeder, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The conduction process as well as the unipolar resistive switching behavior of Au∕HfO2∕TiN metal-insulator-metal structures were investigated for future nonvolatile memory applications. With current-voltage measurements performed at different temperatures (200–400K), the Poole–Frenkel effect as conduction process was identified. In particular, we extracted a trap energy level at ϕt=0.35±0.05eV below the HfO2 conduction band to which a microscopic origin is tentatively assigned. From current-voltage measurements of Au∕HfO2∕TiN structures, low-power (as low as 120μW) resistive switching was observed. The required forming process is shown to be an energy-induced phenomenon. The characteristics include electric pulse-induced resistive switching by applying pulses up to 100μs and a retention time upon continuous nondestructive readout of more than 104s.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3139282