Young’s modulus of pulsed-laser deposited V6O13 thin films
The mixed valence vanadium oxide V6O13 is an interesting material which exhibits an insulator-to-metal or semiconductor-to-semiconductor transition at low temperatures. It is also a much studied cathode material for lithium-based thin film batteries. However, there is little information available ab...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2009-06, Vol.105 (11) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mixed valence vanadium oxide V6O13 is an interesting material which exhibits an insulator-to-metal or semiconductor-to-semiconductor transition at low temperatures. It is also a much studied cathode material for lithium-based thin film batteries. However, there is little information available about its mechanical properties. Young’s modulus of pulsed-laser deposited V6O13 thin films has been determined by measuring the fundamental resonant frequency of silicon dioxide microcantilevers coated with V6O13. Laser deflection techniques were used to measure the cantilevers’ resonant frequencies. The films were further characterized by x-ray diffraction, atomic force microscopy, and resistivity measurements. The value of Young’s modulus associated with the direction along the material’s (001) planes was found to be approximately 100GPa. The values obtained for films ranging from 90to200nm were equal within experimental error. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3137191 |