Quantum chemistry of quantum dots: Effects of ligands and oxidation

We report Gaussian basis set density functional theory (DFT) calculations of the structure and spectra of several colloidal quantum dots (QDs) with a ( CdSe ) n core ( n = 6 , 15 , 17 ) , that are either passivated by trimethylphosphine oxide ligands, or unpassivated and oxidized. From the ground st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2009-07, Vol.131 (4), p.044106-044106-6
Hauptverfasser: Inerbaev, Talgat M., Masunov, Artëm E., Khondaker, Saiful I., Dobrinescu, Alexandra, Plamadă, Andrei-Valentin, Kawazoe, Yoshiyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report Gaussian basis set density functional theory (DFT) calculations of the structure and spectra of several colloidal quantum dots (QDs) with a ( CdSe ) n core ( n = 6 , 15 , 17 ) , that are either passivated by trimethylphosphine oxide ligands, or unpassivated and oxidized. From the ground state geometry optimization results we conclude that trimethylphosphine oxide ligands preserve the wurtzite structure of the QDs. Evaporation of the ligands may lead to surface reconstruction. We found that the number of two-coordinated atoms on the nanoparticle's surface is the critical parameter defining the optical absorption properties. For ( CdSe ) 15 wurtzite-derived QD this number is maximal among all considered QDs and the optical absorption spectrum is strongly redshifted compared to QDs with threefold coordinated surface atoms. According to the time-dependent DFT results, surface reconstruction is accompanied by a significant decrease in the linear absorption. Oxidation of QDs destroys the perfection of the QD surface, increases the number of two-coordinated atoms and results in the appearance of an infrared absorption peak close to 700 nm. The vacant orbitals responsible for this near infrared transition have strong Se-O antibonding character. Conclusions of this study may be used in optimization of engineered nanoparticles for photodetectors and photovoltaic devices.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3135193