Ultradirective antenna via transformation optics

Spatial coordinate transformation is used as a reliable tool to control electromagnetic fields. In this paper, we derive the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain. We s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2009-05, Vol.105 (10), p.104912-104912-6
Hauptverfasser: Tichit, P.-H., Burokur, S. N., de Lustrac, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial coordinate transformation is used as a reliable tool to control electromagnetic fields. In this paper, we derive the permeability and permittivity tensors of a metamaterial able to transform an isotropically radiating source into a compact ultradirective antenna in the microwave domain. We show that the directivity of this antenna is competitive with regard to conventional directive antennas (horn and reflector antennas), besides its dimensions are smaller. Numerical simulations using finite element method are performed to illustrate these properties. A reduction in the electromagnetic material parameters is also proposed for an easy fabrication of this antenna from existing materials. Following that, the design of the proposed antenna using a layered metamaterial is presented. The different layers are all composed of homogeneous and uniaxial anisotropic metamaterials, which can be obtained from simple metal-dielectric structures. When the radiating source is embedded in the layered metamaterial, a highly directive beam is radiated from the antenna.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.3131843