Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters

We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6 N -dimensional phase space Ω of the relativistic systems with 2 N particles and N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2009-04, Vol.50 (4), p.043511-043511-31
Hauptverfasser: Nimmo, J. J. C., Ruijsenaars, S. N. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043511-31
container_issue 4
container_start_page 043511
container_title Journal of mathematical physics
container_volume 50
creator Nimmo, J. J. C.
Ruijsenaars, S. N. M.
description We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6 N -dimensional phase space Ω of the relativistic systems with 2 N particles and N antiparticles, there exists a 2 N -dimensional Poincaré-invariant submanifold Ω P corresponding to N free particles and N bound particle-antiparticle pairs in their ground state. The Tzitzeica N -soliton tau functions under consideration are real valued and obtained via the dual Lax matrix evaluated in points of Ω P . This correspondence leads to a picture of the soliton as a cluster of two particles and one antiparticle in their lowest internal energy state.
doi_str_mv 10.1063/1.3110012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_1_3110012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1703421001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-7437badc4edc0a25ab4bd0c3da4dad227801b4a014f8e722174a86ca27a05f7d3</originalsourceid><addsrcrecordid>eNqNkM1KAzEURoMoWKsL32AQXChMzc1kfroRpPiHFTd1He4kGU0Zm5pkBtqV7-Ab-iROadWV4upuzncuHEIOgQ6AZskZDBIASoFtkR7QYhjnWVpskx6ljMWMF8Uu2fN-2hFQcN4jd5OlCUttJEbe1ibYmY9a7XzjI6drDKY1PhgZjbC2T9rZj7f3e-u1i8Kz0zourVpEsm586Db7ZKfC2uuDze2Tx6vLyegmHj9c344uxrFMgYU450leopJcK0mRpVjyUlGZKOQKFWN5QaHkSIFXhc4Zg5xjkUlkOdK0ylXSJ0dr79zZ10b7IKa2cbPupWCQZpDxYdpBJ2tIOuu905WYO_OCbiGAilUqAWKTqmOPN0L0EuvK4Uwa_z1gwFPG2Mp5vua8NKFrY2e_S7-7iq-uou0Ep_8W_AW31v2AYq6q5BNEbJu_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215616495</pqid></control><display><type>article</type><title>Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Nimmo, J. J. C. ; Ruijsenaars, S. N. M.</creator><creatorcontrib>Nimmo, J. J. C. ; Ruijsenaars, S. N. M.</creatorcontrib><description>We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6 N -dimensional phase space Ω of the relativistic systems with 2 N particles and N antiparticles, there exists a 2 N -dimensional Poincaré-invariant submanifold Ω P corresponding to N free particles and N bound particle-antiparticle pairs in their ground state. The Tzitzeica N -soliton tau functions under consideration are real valued and obtained via the dual Lax matrix evaluated in points of Ω P . This correspondence leads to a picture of the soliton as a cluster of two particles and one antiparticle in their lowest internal energy state.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/1.3110012</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Matrix ; Particle physics ; Physics ; Quantum physics ; Sciences and techniques of general use ; Topological manifolds</subject><ispartof>Journal of mathematical physics, 2009-04, Vol.50 (4), p.043511-043511-31</ispartof><rights>American Institute of Physics</rights><rights>2009 American Institute of Physics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Institute of Physics Apr 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-7437badc4edc0a25ab4bd0c3da4dad227801b4a014f8e722174a86ca27a05f7d3</citedby><cites>FETCH-LOGICAL-c512t-7437badc4edc0a25ab4bd0c3da4dad227801b4a014f8e722174a86ca27a05f7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/1.3110012$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,1558,4509,27922,27923,76154,76160</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21452225$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nimmo, J. J. C.</creatorcontrib><creatorcontrib>Ruijsenaars, S. N. M.</creatorcontrib><title>Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters</title><title>Journal of mathematical physics</title><description>We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6 N -dimensional phase space Ω of the relativistic systems with 2 N particles and N antiparticles, there exists a 2 N -dimensional Poincaré-invariant submanifold Ω P corresponding to N free particles and N bound particle-antiparticle pairs in their ground state. The Tzitzeica N -soliton tau functions under consideration are real valued and obtained via the dual Lax matrix evaluated in points of Ω P . This correspondence leads to a picture of the soliton as a cluster of two particles and one antiparticle in their lowest internal energy state.</description><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matrix</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Quantum physics</subject><subject>Sciences and techniques of general use</subject><subject>Topological manifolds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEURoMoWKsL32AQXChMzc1kfroRpPiHFTd1He4kGU0Zm5pkBtqV7-Ab-iROadWV4upuzncuHEIOgQ6AZskZDBIASoFtkR7QYhjnWVpskx6ljMWMF8Uu2fN-2hFQcN4jd5OlCUttJEbe1ibYmY9a7XzjI6drDKY1PhgZjbC2T9rZj7f3e-u1i8Kz0zourVpEsm586Db7ZKfC2uuDze2Tx6vLyegmHj9c344uxrFMgYU450leopJcK0mRpVjyUlGZKOQKFWN5QaHkSIFXhc4Zg5xjkUlkOdK0ylXSJ0dr79zZ10b7IKa2cbPupWCQZpDxYdpBJ2tIOuu905WYO_OCbiGAilUqAWKTqmOPN0L0EuvK4Uwa_z1gwFPG2Mp5vua8NKFrY2e_S7-7iq-uou0Ep_8W_AW31v2AYq6q5BNEbJu_</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Nimmo, J. J. C.</creator><creator>Ruijsenaars, S. N. M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope></search><sort><creationdate>20090401</creationdate><title>Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters</title><author>Nimmo, J. J. C. ; Ruijsenaars, S. N. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-7437badc4edc0a25ab4bd0c3da4dad227801b4a014f8e722174a86ca27a05f7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matrix</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Quantum physics</topic><topic>Sciences and techniques of general use</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimmo, J. J. C.</creatorcontrib><creatorcontrib>Ruijsenaars, S. N. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimmo, J. J. C.</au><au>Ruijsenaars, S. N. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters</atitle><jtitle>Journal of mathematical physics</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>50</volume><issue>4</issue><spage>043511</spage><epage>043511-31</epage><pages>043511-043511-31</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6 N -dimensional phase space Ω of the relativistic systems with 2 N particles and N antiparticles, there exists a 2 N -dimensional Poincaré-invariant submanifold Ω P corresponding to N free particles and N bound particle-antiparticle pairs in their ground state. The Tzitzeica N -soliton tau functions under consideration are real valued and obtained via the dual Lax matrix evaluated in points of Ω P . This correspondence leads to a picture of the soliton as a cluster of two particles and one antiparticle in their lowest internal energy state.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3110012</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2009-04, Vol.50 (4), p.043511-043511-31
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_1_3110012
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Mathematical methods in physics
Mathematical models
Mathematics
Matrix
Particle physics
Physics
Quantum physics
Sciences and techniques of general use
Topological manifolds
title Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tzitzeica%20solitons%20versus%20relativistic%20Calogero%E2%80%93Moser%20three-body%20clusters&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Nimmo,%20J.%20J.%20C.&rft.date=2009-04-01&rft.volume=50&rft.issue=4&rft.spage=043511&rft.epage=043511-31&rft.pages=043511-043511-31&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/1.3110012&rft_dat=%3Cproquest_cross%3E1703421001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215616495&rft_id=info:pmid/&rfr_iscdi=true