Tzitzeica solitons versus relativistic Calogero–Moser three-body clusters
We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the 6 N -dimensional phase space Ω of the relativistic systems with 2 N particles and N...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2009-04, Vol.50 (4), p.043511-043511-31 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a connection between the hyperbolic relativistic Calogero–Moser systems and a class of soliton solutions to the Tzitzeica equation (also called the Dodd–Bullough–Zhiber–Shabat–Mikhailov equation). In the
6
N
-dimensional phase space
Ω
of the relativistic systems with
2
N
particles and
N
antiparticles, there exists a
2
N
-dimensional Poincaré-invariant submanifold
Ω
P
corresponding to
N
free particles and
N
bound particle-antiparticle pairs in their ground state. The Tzitzeica
N
-soliton tau functions under consideration are real valued and obtained via the dual Lax matrix evaluated in points of
Ω
P
. This correspondence leads to a picture of the soliton as a cluster of two particles and one antiparticle in their lowest internal energy state. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.3110012 |