Strain distributions and electronic property modifications in Si/Ge axial nanowire heterostructures
Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si-Ge MEAM interatomic cross potential was developed based on available experimental data and was used for these studies. The atomic distortions and str...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2009-02, Vol.105 (4), p.044310-044310-9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular dynamics simulations were carried out for Si/Ge axial nanowire heterostructures using modified effective atom method (MEAM) potentials. A Si-Ge MEAM interatomic cross potential was developed based on available experimental data and was used for these studies. The atomic distortions and strain distributions near the Si/Ge interfaces are predicted for nanowires with their axes oriented along the [111] direction. The cases of 10 and 25 nm diameter Si/Ge biwires and of 25 nm diameter Si/Ge/Si axial heterostructures with the Ge disk 1 nm thick were studied. Substantial distortions in the height of the atoms adjacent to the interface were found for the biwires but not for the Ge disks. Strains as high as 3.5% were found for the Ge disk and values of 2%-2.5% were found at the Si and Ge interfacial layers in the biwires. Deformation potential theory was used to estimate the influence of the strains on the band gap, and reductions in band gap to as small as 40% of bulk values are predicted for the Ge disks. The localized regions of increased strain and resulting energy minima were also found within the Si/Ge biwire interfaces with the larger effects on the Ge side of the interface. The regions of strain maxima near and within the interfaces are anticipated to be useful for tailoring band gaps and producing quantum confinement of carriers. These results suggest that nanowire heterostructures provide greater design flexibility in band structure modification than is possible with planar layer growth. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3077293 |