Elasticity of ideal single-walled carbon nanotubes via symmetry-adapted tight-binding objective modeling
The elastic response for a large catalog of carbon nanotubes subjected to axial and torsional strain is derived from atomistic calculations that rely on an accurate tight-binding description of the covalent binding. The application of the computationally expensive quantum treatment is possible due t...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2008-07, Vol.93 (3), p.031919-031919-3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The elastic response for a large catalog of carbon nanotubes subjected to axial and torsional strain is derived from atomistic calculations that rely on an accurate tight-binding description of the covalent binding. The application of the computationally expensive quantum treatment is possible due to the simplification in the number of atoms introduced by accounting for the helical and angular symmetries exhibited by the elastically deformed nanotubes. The elasticity of nanotubes larger than
∼
1.25
nm
in diameter can be represented with an isotropic elastic continuum. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2965465 |