Elasticity of ideal single-walled carbon nanotubes via symmetry-adapted tight-binding objective modeling

The elastic response for a large catalog of carbon nanotubes subjected to axial and torsional strain is derived from atomistic calculations that rely on an accurate tight-binding description of the covalent binding. The application of the computationally expensive quantum treatment is possible due t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2008-07, Vol.93 (3), p.031919-031919-3
Hauptverfasser: Zhang, D.-B., Dumitrică, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The elastic response for a large catalog of carbon nanotubes subjected to axial and torsional strain is derived from atomistic calculations that rely on an accurate tight-binding description of the covalent binding. The application of the computationally expensive quantum treatment is possible due to the simplification in the number of atoms introduced by accounting for the helical and angular symmetries exhibited by the elastically deformed nanotubes. The elasticity of nanotubes larger than ∼ 1.25 nm in diameter can be represented with an isotropic elastic continuum.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2965465