Comment on “Instability of isolated planar shock waves” [ Phys. Fluids 19, 094102 (2007)]
It is shown that Erpenbeck’s solution of the initial-value problem for small perturbations in the presence of shocks [J. J. Erpenbeck, Phys. Fluids 5, 604 (1962); 5, 1181 (1962)] leads to a straightforward and simple method for analysis of rippled shocks as well. Particularly, the result for the rip...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2008-02, Vol.20 (2), p.029101-029101-2 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that Erpenbeck’s solution of the initial-value problem for small perturbations in the presence of shocks [J. J. Erpenbeck, Phys. Fluids
5, 604 (1962);
5, 1181 (1962)] leads to a straightforward and simple method for analysis of rippled shocks as well. Particularly, the result for the ripple amplitude of a shock is the same as the result of Bates derived from an integral equation for the shock displacement function [J. W. Bates, Phys. Rev. E
69, 056313 (2004);
Phys Fluids
19, 094102 (2007)]. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.2838589 |