Thermodynamic properties and interfacial layer characteristics of HfO2 thin films deposited by plasma-enhanced atomic layer deposition

The thermodynamic properties and interfacial characteristics of HfO2 thin films that were deposited by the direct plasma atomic layer deposition (DPALD) method are investigated. The as-deposited HfO2 films that were deposited by the DPALD method show crystallization of the HfO2 layers, which initiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2007-05, Vol.90 (22)
Hauptverfasser: Kim, Inhoe, Kuk, Seoungwoo, Kim, Seokhoon, Kim, Jinwoo, Jeon, Hyeongtag, Cho, M.-H., Chung, K.-B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermodynamic properties and interfacial characteristics of HfO2 thin films that were deposited by the direct plasma atomic layer deposition (DPALD) method are investigated. The as-deposited HfO2 films that were deposited by the DPALD method show crystallization of the HfO2 layers, which initiates at approximately the 35th cycle (about 2.8nm) of the DPALD process. Medium-energy ion scattering analysis reveals that the direct O2 plasma causes a compositional change in the interfacial layer as the process progresses. With an increase in the number of process cycles, the Si content decreases and the O content increases at that position, so that the HfO2-like Hf-silicate layer is formed on top of the interfacial layer. The enhanced physical reactivity of the oxygen ions in the direct plasma and the Hf-silicate layer may be the driving forces that accelerate the early crystallization of the HfO2 layer in the DPALD process in the as-deposited state.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.2743749