Nanometer-scale order in amorphous Ge2Sb2Te5 analyzed by fluctuation electron microscopy
The phase change material Ge2Sb2Te5 is widely investigated for use in nonvolatile memories. It has been reported that the crystallization speed depends on the thermal history, indicating that structural differences exist between amorphous states. The authors apply fluctuation electron microscopy to...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2007-01, Vol.90 (2) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase change material Ge2Sb2Te5 is widely investigated for use in nonvolatile memories. It has been reported that the crystallization speed depends on the thermal history, indicating that structural differences exist between amorphous states. The authors apply fluctuation electron microscopy to quantify differences in the nanometer-scale structural order between several amorphous states of Ge2Sb2Te5. All as-deposited films are found to contain ordered regions. Thermal annealing below the crystallization threshold increases the nanoscale order, and such samples crystallize slightly more rapidly. The authors hypothesize that the nanoscale ordered regions act as the nuclei for crystallization, with the largest regions being the most significant. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.2430067 |