To quantum averages through asymptotic expansion of classical averages on infinite-dimensional space
We study asymptotic expansions of Gaussian integrals of analytic functionals on infinite-dimensional spaces (Hilbert and nuclear Frechet). We obtain an asymptotic equality coupling the Gaussian integral and the trace of the composition of scaling of the covariation operator of a Gaussian measure and...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2007-01, Vol.48 (1), p.1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study asymptotic expansions of Gaussian integrals of analytic functionals on infinite-dimensional spaces (Hilbert and nuclear Frechet). We obtain an asymptotic equality coupling the Gaussian integral and the trace of the composition of scaling of the covariation operator of a Gaussian measure and the second (Frechet) derivative of a functional. In this way we couple classical average (given by an infinite-dimensional Gaussian integral) and quantum average (given by the von Neumann trace formula). We can interpret this mathematical construction as a procedure of “dequantization” of quantum mechanics. We represent quantum mechanics as an asymptotic projection of classical statistical mechanics with infinite-dimensional phase space. This space can be represented as the space of classical fields, so quantum mechanics is represented as a projection of “prequantum classical statistical field theory.” |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.2401673 |